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1 ABSTRACT 

Geographic Information Systems (GIS) are becoming a more common tool in the practice of urbanism and 
urban design. Usually, GIS is used to visualize geo-located data to gain inside into the urban fabric, to either 
plan interventions within it, restructure it, or extend it. One problem for a data-driven planning process with 
GIS is how to turn the gained data into knowledge to drive a project. 

This paper discusses the use of super- and unsupervised machine learning to develop land-use scenarios for a 
vacant site within the city parameters of Berlin. Unsupervised learning is used to find cluster which shares 
certain characteristics. This interpretation of the data helps to make more informed decisions.  

As an example, for supervised learning, a neural network was trained to develop land-use scenarios fully 
autonomously. Autonomously generated land-use scenarios are an essential step to bridge the gap between 
the analysis and the design phase of urban development and enable the use of artificial intelligence in the 
planning process. 
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2 INTRODUCTION 

The topic of "Big Data" or the handling of a multitude of digital resources in urban planning is a long-
standing discussion that first emerged in the course of the "Smart City" movements (Batty 2012a; Batty et al. 
2012b). The interaction of different disciplines such as planning but also computer science is essential for 
this phenomenon. On the other hand, the application of these new technologies also scares off many "old-
established" planners, the entry hurdle in the application of these new methods was and is partly very high, 
administrations were not technologically prepared for this trend. The discussion about who has power over 
the data and who can and may process it has not stopped at urban planning (Streich 2018). Holistic data 
collection approaches in the smart city context have always relied on the collection of GIS datasets (Exner 
2014). 3D city models, on the other hand, attempted to represent the topology of the city in its three-
dimensionality (Döllner et al. 2006) and provided the first platforms for simulations in a three-dimensional 
urban context (Zeile 2010; Mach and Petschek 2006).  With the approach of digital twins - coming from 
product development, transferred to urban planning (Batty 2018), simulation in the urban context is 
experiencing a renaissance (Dembski et al. 2019).  

Using the possibility of parametric design, form-finding processes can be quickly integrated into urban 
situations. In König et al. (Koenig et al. 2017), "cognitive design" also uses contextual data such as GIS 
repositories to create and verify designs. In combination with methods of "artificial intelligence" or the 
"machine learning" assigned to the domain, various international research groups are trying to enrich novel, 
design methods with "intelligent" algorithms to make faster (and more transparent) statements about (urban) 
designs like relational urbanism in their approach for the Baishizhou Shanghai study (Ilaria Di Carlo 2016; 
Llabres and Rico 2016; Cantrell and Mekies 2018). While others generated the land use pattern with cellular 
automata such as KPF UI (KPF UI 2019, 2018). But some issues have still not been resolved:   

How can the data be interpreted correctly in an urban context?  Can planners and programmers go beyond 
the visual feedback of the single layer and analyse them? 

In this contribution, we propose 1) a new method for organising land use plans (semi-)automatically out of 
urban land use datasets and 2) additionally give an outlook on how typological AI can be used to integrate 
the implementation of different land-use scenarios into generative urban planning processes. 

3 MACHINE LEARNING FOR LAND-USE SCENARIOS 

In this section we introduce the notion of "land use" used for us in the context of machine learning - it is 
solely about how we can use a meaningful approach to classify “use” / “land-use” on an urban district level. 
Land use represents the link between the land cover and the actions people take in their environment (Di 
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Gregorio 2005). Therefore in planning, the challenge is to find a suitable link between those two, so that the 
land is suitable for the actions people take and vice versa. While land use is relevant in different scales like 
the regional, city, district or quarter and parcel or building scale (Curdes 1995), in the following we will 
focus on the district scale. 

In the following, we consider the search for suitable land use as a classification problem, while classification 
is assigning objects to a group based on several observed attributes. (Sathya and Abraham 2013)  

If we use this logic to identify a suitable land use for a specific area, the object becomes a certain area of land 
which can be assigned to a group of potential land uses, based on its attributes. Following this approach 
implies that not merely the intention of the planner – but the characteristic of the land itself becomes the 
driver for the pursued use. Whereas the use can become the driver of the design itself. 

The case study for the use of machine learning for land use scenarios was conducted and discussed for the 
Berlin Pankower Tor site, a flat conversion area of a former freight station. Both super-supervised and 
unsupervised machine learning were used to interpret geodata.  

3.1 Methodology: Land-Use – from Vector to Grid Cell 

With the help of machine learning algorithms, we aim to go beyond the representation of geospatial data to a 
(semi-) automated or first interpretation of it. To apply the algorithms, we first have to prepare the geospatial 
data for it. 

Within GIS the form of raster GIS and vector GIS or the mixture of both are commonly used to represent 
geospatial data (Winter 1998). To link areas as “objects” for classification with geospatial data, the objects 
need to be geometrically defined. Therefore, we chose a region-based grid GIS approach, in which we 
divided the site into grid cells.  

Afterwards, we scaled the data to make them relatively comparable to each other. So instead of focusing on 
absolute values, we interpreted the interplay of relative values of certain data categories with the help of two 
different machine learning algorithms. Thereby we achieved with the unsupervised learning method we 
achieved different clusters of areas of a site based on the characteristics whereas with the help of a 
supervised learning method we assigned land use to specific grid cells based on the characteristics of the cell. 

3.2 Data 

Various data can be linked to the grid cells of the raster GIS. For example, they could be structured 
according to the order of the city structure in categories like the constructive spatial structure, land use 
structure, infrastructure, social and economic structures (Streich 2011). 

  

Fig. 1 (left): relative proximity to schools (green high proximity to red low proximity). Fig. 2 (right): relative proximity to public 
transportation (green high proximity to red low proximity) 
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The way we implemented geospatial data was by distinguishing distance-based data from environmental and 
morphological data. If this method would be implemented for analysis of an urban district, other categories 
such as performance, cadastral and socio-demographic data would matter as well. Distance-based data 
includes social, cultural or other amenities, local supplies, communal uses, transportation especially public 
transportation etc. measured in either the shortest or street network distance to the related cell. 
Environmental data focuses on aspects such as sun exposure, noise pollution ventilation and wind comfort, 
soil conditions and similar. Less relevant for the case study site as an even and cleared site was 
morphological data which would include the topology, landscape and existing build structures. Also 
performance data such as walkability, cadastral data and socio-demographic data didn’t play a role in this 
case. We set a residential mix-use as a specific desire for land use. Therefore, qualitative measures of which 
land use is best for the site is less relevant. But relative measures like which areas on the site are better for 
land use x compared to other areas help to place a suitable use. In other words comparing the values of all 
categories between all cells.  

For the task presented in the case study, distance-based and environmental data were the most relevant 
decision criteria. As an example of distance-based data, we implemented educational facilities (see figure 1), 
public transport (see figure 2), general accessibility of the site, local amenities, as well as commercial uses 
based on agglomeration advantages. In the area of environmental data, information on relative noise 
pollution was used. Therefore we used geospatial data provided by OpenStreetMap (OpenStreetMap 
Contributors 2020) and the city of Berlin (Senatsverwaltung Berlin 2017). 

3.3 Unsupervised and supervised machine learning 

To explore the potential of machine learning for land use in the realm of classification, we tested different 
approaches within machine learning, namely supervised and unsupervised learning. 

3.3.1 Unsupervised machine learning for land-use scenarios 

As an example, for unsupervised learning, we implemented a k-means clustering algorithm in python with 
the help of the sklearn library. 

  

Fig. 3 (left): Clustering with three cluster. Fig. 4 (right): Clustering with four cluster. 

orange Education demand: high; motorized private transport: high; 
public transport: average; noise pollution: high; local 
amenities demand; low; shopping demand:low 

 orange Education demand: high; motorized private transport: high; 
public transport: average; noise pollution: average; local 
amenities demand; average; shopping demand:average 

red Education demand: average; motorized private transport: low; 
public transport: high; noise pollution: average; local 
amenities demand; average; shopping demand:high 

 red Education demand: average; motorized private transport: 
average; public transport: low; noise pollution: high; local 
amenities demand; low; shopping demand:low 

yellow Education demand: average; motorized private transport: 
average; public transport: average; noise pollution: low; local 
amenities demand; high; shopping demand:low 

 yellow Education demand: low; motorized private transport: 
average; public transport: average; noise pollution: low; 
local amenities demand; high; shopping demand:low 

   blue Education demand: low; motorized private transport: low; 
public transport: average; noise pollution: average; local 
amenities demand; average; shopping demand:high 
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Clustering aims to find subsets or clusters within the dataset that are related in terms of their data. The k-
means clustering algorithm clusters the data by relating the data points to k sets of clustering centroids 
(James et al. 2017). This method is best compared to the planner overlaying different analysis layers to 
search for a pattern that may emerge from it. With the use of the k-means algorithm, this task is automated. 
The algorithm returns descriptive characteristics for certain clusters of the site. For instance, the description 
for the yellow cluster in fig. 3 is average values for access to education, motorized private transport, and 
public transport; low values for noise pollution and high demand for local amenities including a grocery 
store, while providing relatively low values for shopping. Clustering, therefore, allows to go beyond the 
visual feedback of a single layer and shows how clusters with similar characteristics emerge on the site. 
Looking at a different number of clusters helps to get a better grasp of how the site can be organized by 
relating the values of each cell to one another. This can help the planner make informed decisions while 
assigning land use.  Determining the optimal number of clusters into which the data may be clustered is the 
popular elbow method (James et al. 2017). In this case, the elbow method suggests five clusters (see fig. 5). 

  

Fig. 5 (left): Clustering with five cluster (optimal acc. to elbow). Fig. 6 (right): Clustering with eight cluster. 

orange Education demand: low; motorized private transport: 
low; public transport: high; noise pollution: average; 
local amenities demand; low; shopping demand: high 

 orange Education demand: low; motorized private transport: 
high; public transport: high; noise pollution: low; 
local amenities demand; high; shopping demand: 
low 

red Education demand: high; motorized private transport: 
high; public transport: average; noise pollution: 
average; local amenities demand; average; shopping 
demand: average 

 red Education demand: average; motorized private 
transport: low; public transport: high; noise 
pollution: average; local amenities demand; average; 
shopping demand: average 

yellow Education demand: low; motorized private transport: 
high; public transport: average; noise pollution: low; 
local amenities demand; high; shopping demand: low 

 yellow Education demand: low; motorized private transport: 
low; public transport: average; noise pollution: 
average; local amenities demand; high; shopping 
demand: low 

blue Education demand: low; motorized private transport: 
low; public transport: average; noise pollution: 
average; local amenities demand; high; shopping 
demand: average 

 blue Education demand: low; motorized private transport: 
low; public transport: average; noise pollution: 
average; local amenities demand: low; shopping 
demand: high 

light 
blue 

Education demand: average; motorized private 
transport: average; public transport: low; noise 
pollution: high; local amenities demand; low; 
shopping demand: low 

 light 
blue 

Education demand: high; motorized private 
transport: high; public transport: low; noise 
pollution: average; local amenities demand: high; 
shopping demand: low 

   green Education demand: average; motorized private 
transport: average; public transport: low; noise 
pollution: high; local amenities demand: low; 
shopping demand: low 

   light 
green 

Education demand: low; motorized private transport: 
average; public transport: low; noise pollution: low; 
local amenities demand: average; shopping demand: 
low 

   light 
yellow 

Education demand: high; motorized private 
transport: high; public transport: high; noise 
pollution: high; local amenities demand; low; 
shopping demand: low 
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Since the planner still has to transfer the cluster to meaningful land use himself, this algorithm could be used 
as a semiautomatic approach, helping the planner to make more informed decisions. 

3.3.2 Supervised machine learning for land-use scenarios 

The aim of supervised learning differs from the one of unsupervised learning we discussed before. Instead of 
trying to find clusters on how the site could be organized based on the underlying characteristics, supervised 
learning relates a specific pre-defined land use to each cell based on how it learned to interpret its data. 

So supervised learning depends on a training source with labelled data to train on and to classify the test data 
accordingly. We used an Artificial Neural Network (ANN) as an example for supervised learning. An ANN 
uses error signals to adjust its interconnection with weight combinations and thereby learns how to classify 
cells according to the training data (Sathya and Abraham 2013). We implemented the ANN with the sklearn 
and tensorflow python library. 

  

Fig. 7 (left): Suggested land use by ANN for the ground floor: 0 – local amenities, grocery, 1 – no specific ground floor use, 2 – 
commercial (work), 3 – educational amenities, 4 – commercial (retail). Fig. 8 (right): Suggested land use by ANN for upper floors: 0 

– residential, 1 – commercial. 

As a training set, we generated a pseudo database of land use relating to the categories we use. Therefore, we 
described each land use how it relates to the categories. For example, a site for a grocery store is described as 
follows: rather good access to road infrastructure, for better coverage of local supplies a rather high distance 
to other grocery stores, a medium to high proximity to public transport, proximity to other stores is preferred 
but not required, proximity to educational facilities, noise pollution or other environmental factors are rather 
irrelevant. Commonly land use is classified into types such as residential, commercial, industrial, 
recreational, institutional, various types of green and open space, infrastructural and transportation land use 
(Reicher 2017). While the method introduced here can be used to assist a classification in such a way, we 
focused on the usage related to the following planning steps namely educational amenities, local supplies, 
commercial and residential land use. We differentiated between the use of the ground floor and the upper 
floors. 

Green spaces and infrastructure were considered in a later step. Green spaces and infrastructure were then to 
the morphology of the urban design rather than to the characteristics of the site itself, even though in a 
different context, especially green spaces might be more related to the site characteristics and context 
influences. 

In the training process of the ANN, we followed a conventional approach (Hastie et al. 2017). After we 
trained the ANN and filterd the results, we gained slightly related land-use scenarios for the site which could 
serve as a base for generating various urban design schemes. In a later stage, we double-checked the average 
shortest walking distance from each parcel to the amenities in various generated street networks to get 
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feedback on whether it is well-positioned regarding walking distances. The amenities were mostly in their 
ideal location regarding their walking distance or only off by a parcel. 

4 TYPOLOGICAL AI: IMPLEMENTATION OF LANDUSE SCENARIOS FOR GENERATIVE 
URBAN DESIGN 

For a better understanding of what typological AI is and what approaches have been used in the context of 
urban planning, we start this paragraph by introducing similar approaches.  

In addition to the more familiar approaches in architecture, parametric design and generative design have 
also found their way into urban planning (Fusero et al. 2013). Parametric models, applied for example by 
Zaha Hadid Architects (Rico 2011; Schumacher 2008) or relational urbanism (Cantrell and Mekies 2018; 
Ilaria Di Carlo 2016; Llabres and Rico 2016), are used for form-finding, scenario development and 
optimization of certain aspects of a design (Fusero et al. 2013). Generative approaches like from Nagy et al. 
represent more or less fully automated design generation to optimize development for profit and solar energy 
(Nagy et al. 2018). More recently, Design Space Exploration started to be used for multi-criteria and 
stakeholder optimization in urban design like suggested by Wilson et al. (Wilson et al. 2019, KPF UI 2019;) 
and implemented also by sidewalk labs and others (Ikhena 2020; Margrave 2020). The proposed method 
enables the generation of design variants via procedural geometry generation and statistical analysis of the 
variants. This allows a systematic search for designs based on performance criteria to find reasonably good 
trade-offs for multiple criteria and multiple stakeholders. 

But how can the design space be generated to represent a rather extensive field of possibilities? And how can 
a generated design relate to its surrounding?  

4.1 Methodology: land use to typological design generation 

The already discussed ANN land-use scenarios require as input contextual, environmental and other 
influences as well as desired land-uses. Those land-use scenarios serve as a base for the procedural design 
generation of variants. The generation of the design variants is built up as follows: first, the structure of the 
district is generated based on the district typology, based on the construction fields of the district typology 
building typologies are generated and complete the urban design.  

 

Fig. 9: Proposed workflow  

The design versions are evaluated for floor area ratio (FAR) and building coverage ratio (BCR), real walking 
distances to key amenities, quantities of land usage, sun hours and noise pollution. After the design versions 
are exported including their performance data, they are imported into a design space explorer (DSE) to make 
them easily selectable based on their performance values and morphological criteria like the district 
typology, the building typology and the average building height. 

4.1.1 District Typologies 

There had been various approaches on how to generate urban design variants. A common way is to start with 
the street network and then to implement other morphological elements like green spaces and buildings 
(Schumacher 2008; Rico 2011; Cantrell and Mekies 2018; Fink and Koenig 2019; Wilson et al. 2019). In 
urban design also other approaches had been discussed, for example, to start with the green and public spaces 
and then to develop all other aspects according to it (Bott et al. 2014; Sheppard 2015). One of the key 
benefits of working with DSE is the ability to make different design approaches comparable and include 
them in the design space in which the planner and stakeholder can search for a suitable design scheme. To 
offer a design space that incorporates different approaches, we developed typologies for urban districts in the 
German context. Like building typologies also district typologies can benefit from the “inherent knowledge” 
(Curdes 1995) of the typology due to the “shared formula” derived from repetitive construction (Luna et al. 
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2010). The district typology incorporates the street network, construction fields, as well as the public and 
green space system. Following typologies had been developed, described algorithmically and were 
implemented in the generative process: the grid district, the irregular grid district, the fluent district, the 
cluster district, the central district and hybrid forms with the free shaped public space, overriding open 
spaces and various exceptions. 

 

Fig. 10: District typologies: grid district, irregular grid district, cluster district, central district, fluent district, free shaped public 
space, overriding open spaces. 

4.1.2 Building Typologies 

Based on the construction fields and the land use, the construction fields are further divided into parcels 
suiting the land use. Based on the parcels and the land use, different building typologies are generated.  

There are various suggestions for typologies on the building level (Bürcklin and Peterek 2016; Reicher 2017; 
Korda 2005). In this context, we implemented the perimeter block, the dissolved perimeter, linear buildings, 
detached houses including multifamily, the box and hybrid typologies. 

4.1.3 Performance Evaluation and Design Space Exploration 

After an urban massing is generated, it is evaluated on different performance criteria. Following the process 
of geometry generation like shown in figure 11, preliminary urban designs were generated based on the land-
use scenarios derived from the Artificial Neural Network, district typologies and building typologies. At the 
point of the analysis (Fig. 11, 8) over a thousand variants were generated. For each land use scenario (figure 
11, 3), the different district typologies (figure 11, 4-5) were applied in certain variants of the typologies, like 
different orientations or grid sizes etc. Based on the district typologies different building typologies (figure 
11, 6-7) were applied again enriching the solution space. These generate urban massings are now calculated 
in quantities, like area usage of public versus private areas, FAR, BCR etc. and performance characteristics. 
We implemented a sunlight analysis (Ladybug 2013), real walking distances with a*search algorithm and 
noise exposure. Many other evaluations could be applied, like cost estimates etc.. But with each evaluation 
the time required for the computation increases. Based on these criteria, the choice of various typologies and 
their comparability with help of DSE makes them selectable for various interest groups like investors, cyclist 
activists, environmental activists, administration and others. We also found with a small study group, that the 
way the design variants are selectable with the DSE can be used to help also non-professionals to express 
their desires and priorities for the site based on a preliminary design. This could make this workflow 
interesting for more interactive participation methods like the Charette (Nanz and Fritsche 2012). 

With this heuristic approach based on land use scenarios urban designs could be found, that outperformed an 
urban design study for the site in all areas (Christ et al. 2017). This means, that versions were found, that 
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provided more open space as well as more build square meters, shorter real walking distances to all key 
amenities, more sun hours per façade square meter and less noise pollution.  

 

Fig. 11: Integration of the land-use scenarios in a generative typological approach 

5 CONCLUSION   

While both machine learning algorithms - supervised and unsupervised - aim to find hidden patterns in 
geospatial data referred to a site the way they do this differs. The fundamental difference between those two 
classes of machine learning is the existence of labelled training data (Wah and Berry 2020; Alloghani et al. 
2020).  

In supervised learning, with the existence of labelled training data, the data pattern or characteristics of a grid 
cell as data are directly transferred to a specific label from the training set in this case a land use. Whereas in 
unsupervised learning, the hidden pattern in the analysed geospatial data is related to each other as clusters. 
While the cluster emerge from the characteristics of the geospatial data of each grid cell. This makes each 
approach suitable for different use scenarios. 

The supervised learning method, which was discussed with the example of an Artificial Neural Network for 
classification, is suitable for directly generating land-use scenarios and use these as a design basis for 
generative urban design. It comes with the upside of directly performing a task for the planner of placing the 
land use in a way that suits the labelled training set. This makes supervised learning suitable to at least 
partially automate the task to develop land-use scenarios.  
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But the training of the Artificial Neural Network and the description for the land use for generating the 
training data is a relatively time-consuming matter - especially if the requirements for the land-use change. 
Also, the ability to control the quantity in which each land use is assigned is rather limited. 

Unsupervised learning on the other side does not directly transfer the information of the geospatial data to 
pre-defined land use or label. It rather provides an analysis of the relationship of the geospatial data, or the 
analysed characteristics of each cell, to each other. Therefore, it can be used as a helpful tool for analysis to 
show the planner patterns or better clusters which emerge from different combinations of geospatial data.  

This approach is rather flexible and relatively easy to implement and can give the planner a first overview 
and inform the decision of where to place which use. The performance evaluation of the generated 
preliminary design based on the land-use scenarios shows that this method can help to find high-performance 
designs (s. 4.1.3) and especially DSE makes these design variants comparable and selectable based on 
structural or performance criteria. 

In general, the presented AI mechanisms in combination with the design space exploration fits very well in 
the context of urban workshops, initial brainstorming, starting discussions and the first approaches with 
quantitative data to an area and the spatial grasping of the proposed uses and dimensions. It is intended to be 
a useful addition to the planning process at a very early stage - in the so-called preliminary draft, in which 
important urban planning parameters are set and checked for their effect. The tool still needs to be tested in 
real life situations to further evaluate the effectiveness for planning and participation. 

The proposed concept is not intended to replace the actual planning work in the sense of plan elaboration and 
plan realization; rather, we see it as a useful addition to be able to "explore" variants more quickly, better and 
more transparently and to be able to better grasp not only qualitative design work but also quantitative urban 
development designs. Used sensibly, it helps to be able to quickly examine variants at an early stage. 
Artificial intelligence is not intended to replace the planner's profession, but to better prepare the basis for 
decision-making. 
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