🏆 reviewed paper

Applying 3D Printing as a New Building Technology: Potentials and Challenges in the Egyptian Context

Amr Alaa El-din, Mohamed Ibrahim, Zeyad El-Sayed

(MSc. Candidate Amr Basyony Alaa-Eldin, Faculty of Engineering, Alexandria University, Alexandria,

Egypt,archamrbasyony@gmail.com)

(Professor Mohamed Ibrahim, Faculty of Engineering, Alexandria University, Alexandria, Egypt, abdelallmai@hotmail.com) (Associate ProfessorZeyad El Sayed, Faculty of Engineering, Alexandria University, Alexandria, Egypt, zelsayad1@hotmail.com)

1 ABSTRACT

In the context of the Fourth Industrial Revolution, the world of architecture and construction is being changed by new technologies with opportunities and limitations. Large-scale 3D printing (3DP) technology has recently been introduced as a new building technology to improve productivity and quality. Recently, worldwide stakeholders started experimenting with the technology substitute of traditional. This is due to achieve potentials benefits, such as increased accuracy, customisation, and design flexibility. Additionally, it reduces wasted material, costs, manpower, and printing time. However, these initial investigations are very fragmented at the time of the study. There are different views on where technology can be directed and a large gap between ideas and their applications. 3D printers will be used primarily to print buildings for lowincome housing and emergency housing in developing countries such as Egypt, while most of the buildings that have been built were executed in developed countries. Therefore, it is necessary to understand the international applications and challenges of 3D printing. This paper was set out to give insight into applying 3D printing as a new building technology on an international scale and assessing the applicability potentials and challenges in the Egyptian context; through 1. gathering and analysis of documents and references of opportunities and limitations of 3D printing factors(design, environmental, social, and economical); 2. qualitative data analysis. The descriptive study of international examples outlines the factors used to assess the international examples with anassessment matrix and analysethem within the Egyptian context. It shows that projects divide internationally into projects which invest in optimising the performance and others which are optimising the production according to different characterisations. There are greatpotentials of using 3D printing in Egypt, but it needs to be adapted to numerous challenges in achievingits maximum potential.

Keywords: 3D Printing, Building technology, Architecture, construction, Egyptian context.

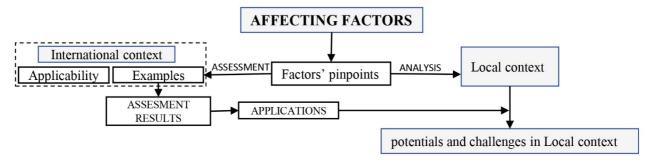


Fig 1The research flowchart

2 INTRODUCTION

The world is confronted with many challenges that have the potential to impact the well-being of societies severely. Climate change, rapid urbanisation, and the digital revolution are among the most pressing of these challenges(Renz et al., 2016). The creation of sustainable, cheap, durable, customisable, recyclable, and even environmentally reparable houses is a critical focus of recent research. The new wave of marketneedsduring the current crisis requires assustainable economic approach to saving energy which will reduce the cost of housing and improve the quality of continuous production(Wu & Wang, 2016). Regarding the many social issues that must be considered. Fear of job loss is the main problem (De Schutter et al., 2018).

The construction sector plays a key role in any country's economy. According to a report published by the World Economic Forum, the construction industry currently accountsfor 6.2% of Egypt's GDP, and a 1 % increase in productivity around the world could save a lot in construction costs (Forum, 2018). "The promise of large-scale 3D printing (3DP) is that it can collapse these limitations, which is a fundamental shift in the relationship between architecture, construction, and manufacturing" (Hager, Golonka, & Putanowicz, 2016).

53

In Egypt, the traditional and most common way of building is witha load-bearing structure and a skeleton framework which requires transport of heavy materials (bricks, cement, sand, and aggregate) to the construction site where on-site wall construction is done with mixed concrete components and manual bricklaying. This approach results in the use of a large number of workers, a lengthy procedure, a high percentage of errors, waste of materials, unnecessary expense, and CO2 emissions resulting from long-distance transportation.

3 AFFECTING FACTORS IN APPLYING **3D** PRINTING

3DP technology offers many opportunities for architecture and the construction sector, but also has limitations which determine its actual implementation in many aspects, concerning design, environmental, social and economic factors (Ma, Wang, & Ju, 2018; SKÖLD & VIDARSSON, 2015; Yeh & Chen, 2018).

	Opportunities	Limitations
	Production of specialised moulds (Camacho et al., 2018).	Conventional design approaches are not suitable for printing.
SI	3D printing technology will push design to change(SKÖLD &	The size of the built object is limited by a gantry or cable-
actc	VIDARSSON, 2015).	suspended approaches
1 E	It can also help build "smart structures" which include various	The building elements, doors windows, pipe systems, wires,
atec	properties(Camacho et al., 2018).	and horizontal components were prefabricated and considered
Rel	Complex geometries without a tool and less waste material(Camacho et	to reduce the absolute free flexibility in mass customisation.
-ug	al., 2018).	
Design-Related Factors	Improving the quality and reliability of elements by eliminating human	Buildings today are limited to producing concrete-based load-
		bearing components.
	Some benefits of this technology can helpin adapt and mitigate climate change (Ding, 2008).	Limitation in material flexibility means that only specific material can move through a machine and can still be used in
tors	3D printing uses a significantly smaller amount of building materials than	the desired manner without damaging or deforming the
aci	conventional buildings.	specific machine (Perkins & Skitmore, 2015).
pa	Reducing formwork, and waste material, (Camacho et al., 2018).	
elat	Decreasing the use of raw materials and removal and recycling from	
-Re	sites(De Schutter et al., 2018).	
Environmental-Related Factors	Using reused or recycled or rapidly renewable materials (De Laubier,	
mei	Wunder, Witthöft, & Rothballer, 2018).	
ron	Decreases the emission rate of CO2 (De Schutter et al., 2018).	
ivi	3D printing works on electricity and saving large quantities of fuel	
Ш	(Perkins & Skitmore, 2015).	
	Reduce the demand for professional craft while opening up new possibilities for the workforce with various skills (Correcto et al. 2018)	One great fear of a rise in the concept of automation is that
s	possibilities for the workforce with various skills (Camacho et al., 2018). Reducing exposure to harsh environments, reducing accident rates	workers will lose their jobs (De Schutter et al., 2018). Deal with many organisational and managerial obstacles (Yeh
tor	(Camacho et al., 2018).	& Chen, 2018).
Social-Related Factors	Add more specialised suppliers (changing in the supply chain) (SKÖLD	Directly influence already existing customers and suppliers
ted	& VIDARSSON, 2015).	(SKÖLD & VIDARSSON, 2015).
ela	For customers, 3DP. Allows end-users to adapt their house design to their	The adoption of 3DP. Was hampered by bureaucratic factors
	own needs.	(De Laubier et al., 2018).
) oci	For a new generation, completely new jobs that do not currently exist	The construction sector is one of the most conservative fields
Ň	when they enter employment in the future.	which is slowly changing and adapting with a new technology
	Over the years, the cost of 3DP has decreased considerably (Perkins &	Economic unattractiveness of expensive automated
	Skitmore, 2015). 3DP is cost-effective when it comes to a custom product with a complex	equipment. The unsuitability of the available automated fabrication
	form (De Schutter et al., 2018).	technologies for large-scale products.
	3SP can manufacture complex geometries without additional cost (De	Requires significant start-up costs and specially trained
	Schutter et al., 2018).	operators (Perkins & Skitmore, 2015).
	3DP decreases service staff costs (transport, accommodation, taxes,	The costs of machines arebased on print speed as well as
	etc.)(Camacho et al., 2018)	material (Yeh & Chen, 2018).
	There is no waste or waste requiring removal and recycling from building	High initial costs for equipment and ongoing maintenance
ors	sites (Camacho et al., 2018).	costs (Perkins & Skitmore, 2015).
acto	Reducing formwork labour costs, temporary moulding, and material costs from 35-60% of the total cost (Camacho et al., 2018).	The building elements, doors, pipe systems, and horizontal components which were prefabricated to fit custom products
P E F	from 55-00% of the total cost (Califactio et al., 2018).	will increase the cost.
Economics-Related Factors	The system as a whole will be capable of reducing construction costs by	The software packages would increase the cost (Perkins &
Rel	close to 30 % (Perkins & Skitmore, 2015).	Skitmore, 2015).
ics-	Adding additional value (e.g., flexibility and scalability, mass	In addition, automated systems operating on dirty worksites
o m	customisation, thermal insulation, materials reduction, and time	outdoors would need frequent cleaning and maintenance
one	reduction) at no additional cost. (Camacho et al., 2018; Lim et al., 2012;	downtime (Perkins & Skitmore, 2015).
Б	Perkins & Skitmore, 2015).	

Table 1 Opportunities and limitations of affecting factors.(sources are cited for each point)

4 METHODS

54

Firstly, analysis and overview of documents for international applicability to determine the spread worldwide; secondly, descriptive study of international examples.

Fig 2 The world map showing international 3DP examples: countries which developed and export technology countries which import technology, develop and adopt it, countries which import technology (Compiled by the authors, sources are cited for each example)

TECLA habitat, Italy	YHNOVA H., H	rance	Winsun projects,	China	Residential H., Russia		
On-site –2019 WASP	On-site - 2017	Batiprint3d	Off-site - 2014	Winsuns 3DP.	On-Site -2016	3DP.: Apis Cor	
Clay (mould) + bio-materials Polyurethane (mould) +			Concrete with gl	ass fibre	Concrete materi	al	
The circular housing model, created using entirely local reusable, recyclable materials moving towards eco-housing, designed to be resilient to any climate and energy-efficient (Chiusoli, 2019).	performance of with its zero was and decreased project's ecologi	the energy construction, and ste, raw materials, transport, the cal footprint was t, Poullain, &	prefabricated assembled on a s 10 houses in S reduces the ove time by 50% to	hanghai, Winsun erall construction o 70%, labour by and materials by	two people a operation and m time just 24 hou errors, It consu power, and The	ting systems, Only are required for naterial supply, less urs minimise human mes only 8 kW of cost of the building eiroa et al., 2019).	

	2. DFAB H., Switzerland	2.6.4 6.4.1.1			
1. AMIE, USA			4. Fluid Morphology, Germany		
Off-site -2015 Ornl'sBaam	Off-site 2019 3D Sand P.	From 2013 3D sandstone	Off-site - 2020 3DP Delta Tower		
Steel rods + glazed materials	Concrete material	Sandstone material	Polycarbonate material		
Many functions of a conventional wall system structure, insulation, moisture barriers, and cladding. This could lead to zero-waste construction, reduced material (Craveiroa et al., 2019).	An 80 m ² lightweight concrete floor slab as part of the House, its highly complex structures are as easy to create as a solid block. In addition, time on site was reduced (Redaktion, 2018).	The computer was a partner in design who proposed an endless number of permutations. This highly ornamental structure is designed entirely by algorithms (Dillenburger, 2017).	panels, each measuring 1 m ² . While textural waves and		
5. Future Office,UAE	6. Multi-use B., UAE	7. 3DP. Village, Mexico	8. 3DP. House, Saudi Arabia		
Off-site 2016 Winsun3DP. (china)	On-site-2019 Apis Cor (USA)	On-site -2017 ICON's 3DP. USA	On-site2018 Cybe (Netherlands)		
(SRC), (FRP), and (GRG)	Concrete and gypsum	Cement mixture	Cement mixture		
Fully functional building featuring electricity, water, and systems. It took 17 days in China and was shipped and installed in 2 days. It reduced labour costs by 50 % to 80% and construction waste by 30% to 60% (Craveiroa et al., 2019).	Apis Cor developed a gypsum-based material to run through the printer, which was sourced for a local producer. Reduction in labour and, therefore, reduction in cost (Molitch- Hou, 2020).	In a remote area in Mexico, The printer has been created as a solution to minimise homelessness that caters to the ever-changing social housing sector and housing crisis (Grace, 2019).	Invest in advantages in construction sites from Cost and standardisation of quality, waste minimisation, speed of implementation, reduction of work accidents, and the possibility of implementing forms (MinistryofHousing, 2018).		

Table 2: selected International Examples (Project name, on-site or off-site, 3d printer name, material, description, and source)

4.1 International Applicability Overview

The analysis of the international spread of 3DP indicates that there are three categories of countries (as shown in figure 1) that deal with 3DP. Firstly, Countries that developed the machine concept, process, and materialsand are exporting 3D, such as the USA,Netherlands,UK, Italy, Switzerland, Russia, Germany, Slovenia, China, France, Denmark, Australia, Spain, and Belgium (barandy, 2019; Camacho et al., 2018; cobod, 2019; Craveiroa, Duartec, Bartoloa, & Bartolod, 2019; De Laubier et al., 2018; Valdivieso, 2019).Secondly, countries which import technology, are adapting it andseeking to invest in other experiences with local requirements such as the Philippines from the USA, Thailand from Italy, UAE from USA(Camacho et al., 2018; Craveiroa et al., 2019; De Laubier et al., 2018).Thirdly, countries which import technology, such as Saudi Arabia from China, Morocco from Spain, Mexico, and El Salvador from the USA, and Malawi from Denmark(3dprint, 2020; De Laubier et al., 2018; Valdivieso, 2019).

Previous cases show that many countries were involved in developing 3DP technology and materials used for it. 3DP technology is capturing increasing international attention in the building technology field. As shown in fig 2, the technology is distributed all over the world, in developed and developing countries.

4.2 InternationalExamples

To date, there have been many experiments in the field of architecture and construction spread across the world, as shown in Fig 2 regarding mainly the construction of whole (small) buildings with materials such as concrete, bioplastic, and clay, also, manufacturing Elements and Details. 12 international Examples were selected to study aspects based on differences in the project approach.

Fig 3 Selected international Examples (Compiled by the Researcher, Sources are cited for each Examples)

5 RESULTS

The results are divided into three sections. Firstly, outlining the key factors based on the analysis of the opportunities and limitations of affecting factors. Secondly, assessing the strength of the factors of each example with an assessment matrix and thirdly, analysing the characteristics of the affecting factors in the Egyptian context.

5.1 Key affecting factors

Outline of the keyfactors derived from the opportunities and limitations of affecting factors in part 3.

Design Related Factors	Environmental Related Factors	Social Related Factors	EconomicsRelated Factors
Design flexibility	Climate change adaptation	Reducing workforce	Initial cost
Structure functionality	Lower resources	Jobs shifting paradigm	Reducing materials cost
Design optimisation	Materials	Safety in extreme	Reducing labour cost
Quality issues	Reduced materials	environments	Cost reducing
	Raw materials	Fewer accidents rate	Unique architecture
	Reused or recycled	New job opportunities	Mass customisation
	Decreasing the emission of CO2		Time-saving
	Less total energy		_

Table 3: Affecting factors' pinpoints(by authors derived from part 3)

5.2 Assessment Matrix of Selected Examples

Assessment of the strong points of each example measured by achieving factors at three levels: fully present, partially present, and does not exist as shown in fig 4.

	factors	De	esign	relat	ed		Env	iron	ment	al re	lated			Soci	al rel	lated			ł	con	mic	relate	d	
Exan	nples	Design flexibility	Structure Functionality	Design optimization	Quality issues	climate change adaptation	lowers resource M.	reduced wastes	using raw materials	reused, or recycled Materials	decrease emission CO2	Less total energy use	reducing workforce	Shifting in jobs	extreme environments	Fewer accidents rate	Job's opportunities	low Initial cost	Reducing materials cost	Reducing labors cost	Cost reducing	Unique architecture	Mass customization	Time saving
	TECLA habitat (Italy)	0	0	0	0	lacksquare				\bullet	\bullet		ullet	0			0			0	lacksquare	0		0
	YHNOVA House (FRANCE)	0			0	lacksquare			0	0	0			0	0	0	0		0	0	0	0		0
t	Winsun Projects (china)				0	0			0	\bullet		0	lacksquare	0			0	0					0	ullet
nd expo	RESIDENTIAL HOUSE (Russia)	0	0		0						0		lacksquare	0					0		0	0		
developing and export	AMIE DEMO -NSTRATION (USA)			0			0					•	0						0				0	•
devel	DFAB HOUSE (Switzerland)			0					0								0		•		0			
	DIGITAL GROTESQUE (Switzerland)						0	•	0	0		0		\bullet							•			•
	FLUID MORPHOLOGY (Germany)	\bullet				lacksquare			0		0		0				•		0		0			•
Importing and adapting	Office B. (Dubia)			0		lacksquare					0	0	lacksquare	0										ullet
Impo ar adap	biggest 3DP B. (Dubia)			0			0					0		0							0			
Import technology	3DP COMMUNITY (Mexico)	0	0		0				•				•	0		0			•					ullet
Im techr	3DP HOUSE (Saudi Arabia)		0		0	0		•	•		0	0		0	0	0	0		0					ullet
			Fac	ctor	fully	/ pre	sent			0	Fa	ctor	part	ially	pre	sent				Fac	tor c	loesr	n't e	xist

Fig. 4: Assessment matrix for selected international Examples(by authors)

5.3 Analysis of Assessment Matrix

Regarding the strategy of using 3DP, there are two main approaches in the studiedexamples. Optimising the performance, and optimising the production. The former aims to develophigh-performance by analysing the design-related factors and environmental-related factors of printable materials, methods to print unique architecture with structurally optimised shapes; overall, it aimsto achieve the highest possible quality, full customisability both of shape and printed material, and structure functionality. The latter aims at optimising the production, developing technology by considering mainly the economic and environmental-related factors, such as low cost, fast but customised alternatives of traditional construction it would aim at using local, cheap materials and optimising the construction method in terms of cost and speed. Printing would occur locally (either on- or off-site). Based on the above analysis, the selected examples can be divided into two groups, as shown in table 4.

Examples of Optimising the	e Performance	Examples of Optimising the Production,				
YHNOVA H., France	Grotesque – Switzerland	TECLA habitat, Italy	Multi-use B., UAE			
AMIE, USA	Fluid Morphology, Germany	Winsun projects, China	3DP. Village, Mexico			
DFAB H., Switzerland	Future Office, UAE	Residential H., Russia	3DP. House, Saudi Arabia			

Table 4: classification of the selected examples(by authors).

The assessment matrix is converted into a visual percentage chart divided into performance and production groups (each group has 6 examples). according to the three levels of assessment: does not exist = 0 X, partially present = 1 X, and fully present = 2 X (whereas X is a fixed number). therefore, every criterionis assessed in 12 X for each group; i.e., the first criterion is the design flexibility in the performance group from the matrix (5 fully present + 1 partially present = 10 X + 1 X = 11 X) therefore, 11 X * 100 / 12 X = 91.7 %, and so on.

57

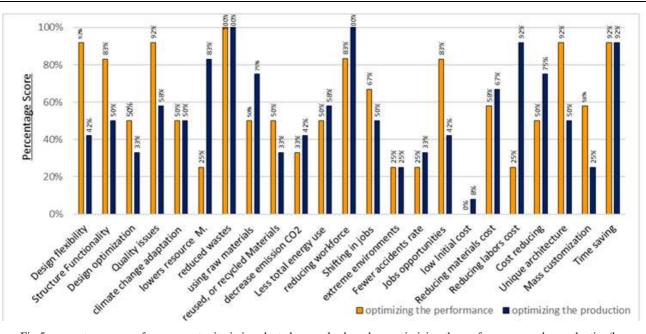


Fig 5: percentage score of assessment criteria in selected examples based on optimizing the performance or the production(by authors).

Although there are still only a few examples around the world, it could be concluded that significant strengthsare found in most of the examples, whether optimising the performance or the production (fig 4): reducing waste in resources and materials, saving time, and reducing the workforce.

The examples of optimising the performance are characterised by:

- Novel forms of design flexibility, a range of customisations and complexity,
- Optimised typology and functionality with high accuracy and quality,
- Developing new applications with new job opportunities,
- Developing a variety of materials, machine layouts, and properties.

On the other hand, the examples of optimising the production are characterised by:

- Mass production buildings by reducing cost and construction time,
- Using in situ resources, reducing material transportation costs and sustainable design solutions,
- Increased accessibility, reduced risks in remote sites and extreme environments.

5.4 Analysis of affecting factors characteristics within the Egyptian context

The analysis of the characteristics of the affecting factors within the Egyptian context aimed to determine the potentials and challenges in applying 3D printing in Egypt.

In addition, the construction sector is one of the most conservative fields in Egypt, where building technology development depends on the shareholders who are involved in the current value chain and are avoiding change. Also, regulatory policies have strong technological influences on regulations and building codes. Hampered by bureaucratic factors, integrating new technology into the construction process, which is considered very conservative in changing or development, is very slow. Besides that, there are mainly technological limitations, such as the size of the built object, limited by gantry which determines the options of applicability in Egypt regarding low-rise buildings (ground to ground and two levels), and to the fact that only specific material can move through a 3D printing machine.

	Cn	aracteristics of 3DP factors	The case of Egypt		
		Design flexibility Pushing design to change and	As a result of the rapid urbanisation in Egypt, architectural design tends to be more prace and economical. While the architectural flexibility of 3DP technology may p		
		restrictingregular designs. Structurefunctionality	designers to pay attention to environmental considerations and heritage styles. Opportunity for materials technology. Research &development of printable materials development of printable materials.		
		Building "smart structures". Design optimisation	developed locally. Such as desert sand, to add new features suitable for this process. Opportunity to provide flexibility in architectural design, which does not require		
-		Producing specialised molds. Quality issues	standardisation of production elements, saving materials and time. Egypt is at a medium level of quality due to the size and quality of the workforce,		
		Increase the execution accuracy.	mistakes are increasing the cost due to the need for corrections.		
		Climatechange adaptionand mitigation	The new technology supports thermal mitigation such as wall thickness, the amount of a the wall section		
ļ		Fewerresources. Reducing material waste.	 Positive effects to save the natural resources which are the primary source for buildings. Material waste of timber frameworks averages 13%, and waste of sand is as high as (Garas, Anis, & El Gammal). 		
-		Using raw, reused materials Decreases the emission rate of CO2 remarkable.	Egypt has many local raw materials suitable for construction, such as sand and clay Egypt produced 310 m tonnes of CO2 greenhouse gas emissions in 2016. Thus reduction in fuel use will be a positive impact (Hannah Ritchie, 2020).		
		Fewerfossil fuel energyto produce electricity.	This is consistent with Egypt's Vision 2030 to use clean energy instead of fossil fuels.		
	Ch	naracteristics of 3DP factors	The case of Egypt		
		-	This is a threat in Egypt. The construction sector is providing around 3.7 million jobs,		
		Reducing workforce Workers will lose their jobs	representing 20 percent of total workers in the domestic market(according to Planning Minister Hala al-Saeed), although it does not create sustainable or stable jobs, as it is linked to project time (EgyptToday, 2018).		
Jobsshifting	Add more value to the construction phase		It will affect the construction industry, technically, economically, and socially, resulting in the entry of new producers, processors, suppliers, and exporters.		
	Jobss	Changing roles and organisational processes.	Using 3D printing In Egypt shortensmany building processes (e.g., design, coding details, training, manufacturing, and marketing).		
		Impact on supply chain	Using new technology will negatively affect the traditional suppliers in Egypt.		
		Reducing exposure to harsh environments.	May be useful in difficult worksite conditions in Egypt, such as the extremely hot desert climate.		
environments. Loweraccident rate Safety in the construction sector, fewer accidents		Safety in the construction	Alarming statistics indicate that the construction industry accounts for 55,000 fatal injuries each year in Egypt and the construction industry has the highest fatalities and death rates among all industries (ElSafty, ElSafty, & Malek, 2012).		
	New job opportunities Reducing the demand for the professional craft.		The traditional labour market has a large number of untrained workers (who do not have a job and work in construction), leading to a shortage of skilled workers, but using 3DP would move technical construction jobs to new opportunities of dealing with technology.		
		High Initial Cost The costs of machines, Specially trained operators, The software packages, Special material types.	Printing technology, like anything new, starts expensive, but over time it is getting more affordable. A machine is a one-time investment that should pay for itself over time replacing computing and healthcare costs. However, the machine cost ranges from 80 000 \$ to 500 000 \$ (Cherdo, 2020), an investment which s the construction market in Egypt would have to bear.		
	ls cost	Reducingmaterialscost(fewermaterialsareneeded).Reducingwasterequiringremovalandrecyclingfrom building sites.	According to (ECBM), Egypt's exports of building materials, refractory and metallurgy industries was \$1.5 billion during the first quarter of 2020, an increase of 32.8 percent, compared to \$1.15 billion a year earlier. Research indicates that using printing saves between 30% to 70% in materials, which will positively impact the Egyptian economy (egypttoday, 2020).		
		Reducing labour cost (reduces the number and service)	Saving labour costs, transportation, insurance, and health expenses is an economic advantage, especially during a health crises.		
		Reducing construction costs	TheEgyptian construction sector performed strongly during FY 2019, contributing 6.2% to Egypt's GDP. Therefore, any saving in the cost will have a good impact on the economy.		
		Time-savingdue to printers' ability to operate 24/7	Avoiding delays related to deliveries and coordination caused by working requirements for installing utilities will be more cost-effective. One of the main reasons for the high construction cost is delays during the execution period in Egypt.		
		Adding additional value at no additional cost Design flexibility Complex geometries Mass customisation, Thermal insulation, Time reduction.	Value relates to assessing the benefits brought by something regarding the resources needed to achieve it, whichin the case of 3D printing includes design, production, and environmental response, and reducing time without additional cost. In Egypt, using 3DP as new technology is itself considered to add value.		

6 DISCUSSION

This section addresses several points. The international adaptability, Accordingly part 4, countries are divided into three categories. Those which develop and export 3DP technology and consider mainly developed countries are focusing on developing new materials, new applications, restoration and refurbishment, as an alternative method to solve the labour shortage problem in many developed countries, and ultimatelyon exporting3DP to developing countries as commercial technology. The second group of countries import technology andadapt it by developing machine properties and suitable materials to match the local requirements, while the third group of countries imports technology and focuses on affordability by reducing construction cost and time.

Although the selected examples studied are characterized by diversity in applied approaches and the materials used. However, the technology clearly shows that. It is still in the light of experiments and exploration, not consumer technology. Also, the printer's limitations in print just the foundations and entire building walls, but did not include printing other components and need special covering most constructive sites.

Regarding the strategy of using 3DP in international applications, the study found two main approaches among the examples: optimising performance and optimising production. It could be concluded that The application of 3D printing technology can bring many benefits, such as reducing waste of resources and materials, saving time, and reducing the workforce. The approach of optimising performance is characterised by novel forms of design flexibility, typology optimising and functionality, development of new applications, new materials, and machine layout. The approach of optimising production is characterised by mass production, using in situ resources, and increased accessibility which could mainly be used for affordable housing.

There are distinct international experiences that can be investigated in the Egyptian context, whether concern with optimizing the performance and optimizing the production. The following table determines the strength points which be Applicable in Egypt from different international Examples based on the assessment results.

	characterised points	International Examples		Applicable in Egypt
ee	Novel Forms and Design Flexibility	Future Office in UAE, CURVE APPEAL in the USA, DFAB H. in Switzerland	Application	full or partial free form or luxury buildings, Interiors-designed elements.
rforman	Typology Optimising and Functionality, Develop New	Fluid Morphology in Germany Digital Grotesque in	AF	Architectural cladding Adaptable, portable units Print accurate details as Repairing or
the Pe	Application	Switzerland YHNOVA House in France	00	reproducing historical structure.
Optimising the Performance	Develop A Variety of Materials. Develop Machine Layout and Properties.	(Polyurethane mold)	Materials	Salt as a raw material GFRC as Permanent formwork GFRP as a wireframe Bioplastic, Spray-foam as a mold
0	Layout mar ropada.		4	Nylon as a light structure
the	Mass Production Concept	Winsun projects 3DP village, Mexico	Appli	affordability housing, prefabrication Building elements, Emergency shelters.
sing	Increased Accessibility, Reduced Risks in Remote Site	Residential House in Russia	cations	Remote or hazard construction site, Rapid structure for military purposes.
Optimising Production	In-Situ Resources and Local Materials	TECLA habitat in Italy (Clay as a mold) + bio-materials (husks and rice straw) Multi-use Building in the UAE (concrete and gypsum).	Materi	Sand as a construction material Concrete reinforced by, fly ash, silica fume, and nano-silica. Clay is a ceramic material. Glass-fibre-reinforced gypsum (GFRG)
Prod		(concicio and Syptam).	als	Ciast Interentitiered System (

 Table 6: Applicable of applications and materials in Egypt (by authors)

According to the available materials suitable for use with 3D printing In Egypt, there are opportunities to use local materials such as sand with admixtures, concrete with additives (such as flash ash, Silica fume, and nano-silica), clay, and salt.

Table 6 provides a synthesis of the outcome of the research; it lists the proposed applications of 3D printing in the construction sector derived from the analysis of selected international examples, it identifies the key characteristics of 3D printing in the field of construction, and it shows the impacts of 3DP as potentials and challenges in the Egyptian context.

Proposed Applications	Key factors	Potentials in Egypt context	Challenges in Egypt context
Full or partial free form or luxury buildings			Supporting the private developers to afford the new technology, need of updating regulations and codes, lack of stakeholders' interest, dealing with shifting the supply chains, and construction workers'job paradigm d projects the medium termfor luxury housing with sourhoods in the Administrative Capital and the new al
Interiors: designed elements Facade: cladding	Design Related Factors Design flexibility Structure functionality Design optimisation	Exploit reducing waste materials with design flexibility and accuracy without any additional cost. Materials could be used, such as GFRP, GFRC, and GFRG	Supporting small entrepreneurs and training designers to deal with the new design process and software
elements	Quality issues	High applicability inthe short term	·
Adaptable portable units	Environmental Related Factors Climate change	3DP could be used for emergency medical shelters, to exploit mass production, and reduce construction time	The high initial cost and the benefit of speed must be a common application in use.
r	adaptation Lower resources	Lowapplicability in he long term	
Repairing or reproducing historical structures	Lower resources materials Reduced materials Raw materials Reused, or recycled materials Decreasing CO2	Exploiting digital accuracy could be used to repair accurate details, reproduce a mesh with translucent materials in a historical building, live a new experience, compatibility with a 3D scanner for production of 3D model High applicability in the short term	Develop regulations and codes with new technology, develop 3D printer scale and machine layout, develop suitable materials, qualify professionals to manage it.
Affordable housing	emissions Less total energy use Social Related Factors Reducing workforce Shifting in jobs paradigm Safety in extreme environments Loweraccidents rates New job opportunities Economics Related Factors Initial cost	A new housing policy was being drafted to address the serious housing deficit; in the effort to provide affordable housing in a sustainable approach, so take advantages of in-site mass production, cost reduction (reduce wastes, workers costs) in long term,develop hyper technique approach, and using local materials such as desert sand, GFRC, GFRG, Clay, and concrete with fly ash, silica fume, and nano- silica. In addition, reducing the carbon footprint.	It's not suited in the Egyptian Urban context because of the limitations in the current 3DP., high cost of horizontal infrastructure, changes in the supply chain, shifting in workers Paradigm, update regulations and codes, overcome economic constraints, manage new technology risks, preparation in-site printing conditions, and the willingness of the lower and middle-income people to live in printed houses.
Prefabricatedbuil ding elements	Reducing materials cost Reducing labour cost Reducing overall costs Unique architecture	Very similar to the construction on-site, except that it is characterised by greater accuracy, and controlling climate conditions. Lowapplicabilityinthe long term.	Need of heavy transfer, disadvantages of fixtures and fittings, inflexible in design, need to qualify professionals to manage it.
Remote or hazardous construction sites	Mass customisation Time-saving	Replacing manual workforce with 3DP at remote and hazardous construction sites.thus reducing risks and labour costs and using raw materials such as sand.	Dealing with the problem of material properties at high temperatures condition
		High applicability in the medium term	
Rapid structure for military		Exploit construction speed and raw materials such as sand.	Manage new technology risks.
purposes		Lowapplicabilityinthe medium term	f 2DD in E-rout (her authous)

Table 7: potentials and challenges of applying proposed applications of 3DP in Egypt. (by authors)

It can be concluded that 3Dprinting is not a magical solution that can solve all the problems of traditional building techniques. Critical several challenges need to be resolved to achieve the maximum potential of the 3D printing technology, and many more potentials have to be investigated.

Applying 3D Printing as a New Building Technology: Potentials and Challenges in the Egyptian Context

potentials	challenges
Increased design flexibility	3DP is reducing job opportunities for qualified workers.
Time-saving	Materials of use for 3DP are limited as they require specific properties
Ability to use in-situ materials	3DP is not suitable for larger-scale projects
Variety of raw materials	Specific geometrical possibilities limit the printing method
Reduced resources and material waste	Utilities (electric, plumbing, and door and window) are not yet integrated into
The environmentally way is to use demolition waste	the design process
Cost reduction in addition to the minimised cost of storage	Using 3DP also requires a change in the design process
and transportation cost of materials	It is still a limited and expensive technology.
Reduced workforces and their transportation costs	There are no set regulations for using 3DP in construction
New lob opportunities as a new supplier	Lack of knowledge about technology among the stakeholders
Reduced health and safety risk on-site.	3DP requires new skills (installation, operation, control, and maintenance) for
Mass customisation at no extra cost.	workers.

Table 8: Challenges and potentials in applying 3DP. (by authors)

7 CONCLUSION

This study aimed to give insight into applying 3D printing as a new building technology on an international scale and assessing the potentials and challenges in developing and applyingit in countries like Egypt. Based on qualitative data analysis of international examples, the study analysed 3D printing factors, their characteristics, opportunities and limitations. It assessed key factors with theassessment matrix and analysed the applicability of 3DP in the Egyptian Context.

From understanding the role of applied projects and Egypt's economic, social, and scientific situation as a developing nation, Egypt belongs to the second group of countries that import technology and adapt and develop it according to their needs and resources. But there are urgent challenges that need to be dealt with, such as developing local printable materials, updating the regulations and codes, spreading awareness between the different stakeholders and, most importantly, dealing with shifting the job paradigm because 3DP will reduce the need for a significant number of construction workers. While this is considered a benefit for countries with a shortage of labour, it is a disadvantage for countries with a large workforce depending on the construction sector whose jobs are at risk.

Although the technology is still in its infancy, it has continued to gain popularity among researchers and practitioners in the architecture and construction field of some developed and developing countriesworldwide. The future of technology in Egypt is most likely to be a partially built process that allows stakeholders to take advantage of both traditional and 3D printing technologies at the same time. The efficiency of reducing time and waste of materials could be the keys of this technology in the Egyptian context. Moreover, this technology would be applied locally for very limited cases in the near future, such as repairing or reproduction of historical structures, elements designed for interiors, and facade cladding elements. In the medium-term. The construction sector may invest in the mass production potential of 3DPfor affordable housing due to its economic efficiency or invest in flexible design and environmental benefits forfull or partial free forms of luxury buildings.

8 RECOMMENDATIONS

At the level of completing this research, This research provided background and deliberated potentials and challenges of the applicability of 3DP in different cases throughout the world so that future research could match local requirements and properties with the key factors which determine the applicability of 3DP toseveral local contexts. As regardsgeneral 3DP development, further work is needed to explore ways of printing with multiple materials, develop new materials, use in situ resources, faster printing, quality assurance, and mechanical property data, and combine 3DP with other processes such as hybrid techniques to increase the potential of applying it as new building technology.

9 ABBREVIATIONS

Abbreviation	meaning	Abbreviation	meaning
(3DP)	Three-Dimensional Printing	(GFRP)	glass-fibre reinforced plastic
(GFRC)	glass-fibre reinforced concrete	(GFRG)	glass-fibre-reinforced gypsum

10 REFERENCES

62

3dprint. (2020). Malawi Wants to Build Africa's First 3D Printed Buildings. barandy, k. (2019). entirely 3D printed facade to become new face of munich's deutsches museum. Retrieved from https://www.designboom.com/architecture/deutsches-museum-3d-printed-facade-03-22-19/

- Camacho, D. D., Clayton, P., O'Brien, W. J., Seepersad, C., Juenger, M., Ferron, R., & Salamone, S. J. A. i. c. (2018). Applications of additive manufacturing in the construction industry–A forward-looking review. 89, 110-119.
- Cherdo, L. (2020). The 13 best construction 3D printers in 2020. Retrieved from https://www.aniwaa.com/buyers-guide/3d-printers/house-3d-printer
 - construction/#:~:text=Construction%203D%20printer%20price,K%20to%20over%20%241M.
- Chiusoli, A. (2019). TECLA, a 3D printed global habitat for sustainable living. Retrieved from https://www.3dwasp.com/en/3d-printed-house-tecla/
- cobod. (2019). cobod 3d printer. Retrieved from https://cobod.com/
- Craveiroa, F., Duartec, J. P., Bartoloa, H., & Bartolod, P. J. J. s. d. (2019). Additive manufacturing as an enabling technology for digital construction: A perspective on Construction 4.0. 4, 6.
- De Laubier, R., Wunder, M., Witthöft, S., & Rothballer, C. J. B., MA: The Boston Consulting Group. (2018). Will 3D Printing Remodel the Construction Industry?
- De Schutter, G., Lesage, K., Mechtcherine, V., Nerella, V. N., Habert, G., Agusti-Juan, I. J. C., & Research, C. (2018). Vision of 3D printing with concrete—technical, economic and environmental potentials. 112, 25-36.
- Dillenburger, B. (2017). Digital Grotesque II. Retrieved from http://www.michael-hansmeyer.com/digital-grotesque-II
- Ding, G. K. (2008). Sustainable construction—The role of environmental assessment tools. 86(3), 451-464.
- EgyptToday. (2018). Construction sector provides 3.7M jobs: Min.
- egypttoday. (2020). ECBM: Egypt's exports of building materials hit \$ 1.5 bn during Q1 2020. Retrieved from
- https://www.egypttoday.com/Article/3/85072/ECBM-Egypt-s-exports-of-building-materials-hit-1-5
- ElSafty, A., ElSafty, A., & Malek, M. J. O. J. o. C. E. (2012). Construction safety and occupational health education in Egypt, the EU, and US firms. 2(3), 174.
- Forum, W. E. (2018). Future scenarios and implications for the industry.
- Furet, B., Poullain, P., & Garnier, S. J. A. M. (2019). 3D printing for construction based on a complex wall of polymer-foam and concrete.
- Garas, G. L., Anis, A. R., & El Gammal, A. Materials waste in the Egyptian construction industry.
- Grace, K. (2019). World's First 3D Printed Community Minimises Homelessness in Mexico. Retrieved from
- https://www.archdaily.com/930556/worlds-first-3d-printed-community-minimises-homelessness-in-mexico Hager, I., Golonka, A., & Putanowicz, R. (2016). 3D printing of buildings and building components as the future of sustainable
- construction? Procedia Engineering, 151, 292-299.
- Hannah Ritchie, M. R. (2020). CO2 and Greenhouse Gas Emissions.
- Lim, S., Buswell, R. A., Le, T. T., Austin, S. A., Gibb, A. G., & Thorpe, T. J. A. i. c. (2012). Developments in construction-scale additive manufacturing processes. 21, 262-268.
- Ma, G., Wang, L., & Ju, Y. (2018). State-of-the-art of 3D printing technology of cementitious material—An emerging technique for construction. 61(4), 475-495.
- MinistryofHousing. (2018). Saudi Arabia is succeeding in the experience of building the first 3D printed house in the Middle East. Retrieved from https://www.housing.gov.sa/en/news/897
- Molitch-Hou, M. (2020). "World's Largest" 3D Printed Building Unveiled in Dubai. Retrieved from
- https://3dprint.com/261978/worlds-largest-3d-printed-building-unveiled-in-dubai-d/
- Perkins, I., & Skitmore, M. (2015). Three-dimensional printing in the construction industry: A review. 15(1), 1-9.
- Redaktion, d. (2018). Pioneers in 3D Printing: ETH Zurich Uses 3D Sand Printing For Real-Scale Architectural Project. Retrieved from https://blog.drupa.com/en/pioneers-in-3d-printing-eth-zurich-uses-3d-sand-printing-for-real-scale-architectural-project-2/

Renz, A., Solas, M. Z., Almeida, P., Buhler, M., Gerbert, P., Castagnino, S., & Rothballer, C. (2016). Shaping the future of construction. A breakthrough in mindset and technology. Paper presented at the World Economic Forum. Retrieved June.

- SKÖLD, G., & VIDARSSON, H. (2015). Analysing the Potentials of 3D-Printing in the Construction Industry.
- Valdivieso, C. (2019). Be More 3D launched the construction of the first 3D printed house in Africa. Retrieved from https://www.3dnatives.com/en/be-more-3d-first-3d-printed-house-africa-111020194/
- worldeconomicforum. (2019). This start-up is 3D-printing an entire neighbourhood in Mexico. Retrieved from https://www.weforum.org/agenda/2019/12/3d-printed-homes-neighborhood-tabasco-mexico/
- Wu, P., & Wang, J. (2016). A critical review of the use of 3-D printing in the construction industry. 68, 21-31.
- Yeh, C.-C., & Chen, Y.-F. (2018). Critical success factors for adoption of 3D printing. 132, 209-216.