
� reviewed paper 
 

Proceedings REAL CORP 2011 Tagungsband 
18-20 May 2011, Essen. http://www.corp.at 

ISBN: 978-3-9503110-0-6 (CD-ROM); ISBN: 978-3-9503110-1-3 (Print)
Editors: Manfred SCHRENK, Vasily V. POPOVICH, Peter ZEILE
 

 

345 
 

GEARViewer: A State of the Art Real-Time Geospatial Visualization Framework 

Stephan Mantler, Gerd Hesina, Michael Greiner, Werner Purgathofer 

(Dr. Stephan Mantler; VRVis Research Center; Donau-City-Strasse 1, 1220 Vienna, Austria; step@vrvis.at) 
(Dr. Gerd Hesina; VRVis Research Center; Donau-City-Strasse 1, 1220 Vienna, Austria; hesina@vrvis.at) 

(Michael Greiner; GEOCONSULT Wien, Hütteldorfer Strasse 85, 1150 Vienna, Austria; michael.greiner@vienna.geoconsult.at) 
(Prof. Werner Purgathofer; VRVis Research Center; Donau-City-Strasse 1, 1220 Vienna, Austria; purgathofer@vrvis.at) 

1 ABSTRACT 

Geospatial visualization is playing an increasingly important part in the planning and public discussion of 
infrastructure projects. In addition to pre-rendered highly realistic imagery, interactive viewers have become 
an important tool for this task. Advances in rendering technology and performance have reduced the gap in 
visual quality between pre-rendered imagery and real-time applications, and the additional possibilities of a 
live visualization may become important tools in the decision making process. 

Historically, the step from GIS data or a highly detailed architectural model to a representation that is 
suitable for real-time display has been complex and required a very finely tuned workflow. On the other side, 
the general public is relatively spoiled by the extremely high quality of computer games and CGI films. 
Naturally, a tremendous amount of work and time is typically spent to fully optimize computer games for the 
available hardware. This is usually not possible for geospatial visualization tasks, but nonetheless current 
interactive viewing applications must strive to achieve similar quality and performance to be successful. 

In this paper, we present GEARViewer, a state of the art geospatial rendering framework developed at 
VRVis. Developed in close cooperation with major stakeholders in the Austrian road and railway 
infrastructure, it bridges the gap between GIS applications and real-time rendering, and achieves a high 
degree of realism and performance while supporting many of the tasks involved in geospatial visualizations. 

2 INTRODUCTION 

In the planning and public discussion of large infrastructure projects, many decisions need to be made that 
depend on a good understanding of how the project will fit into its environment. Traditionally, this has been 
done with 2D plans, architectural drawings or pre-rendered still and motion pictures. However, especially in 
the case of the general public, a more versatile, interactive approach may be helpful to provide a better 
understanding of the project. 

The essential technology for interactive visualizations has been demonstrated by numerous games, where 
vast environments were displayed with formidable detail and realism, and it should certainly be possible to 
build a geospatial viewer application with similar capabilities. However, games are typically high budget 
productions with long development cycles, and the rendering system and 3D models are often finely tuned 
for the best possible quality and performance. This development style is not quite suitable for 
geovisualization projects, where changes need to be incorporated on short notice, and manpower is typically 
much more limited. Furthermore, data is often created in GIS or architectural modeling applications, and 
with different goals than real-time rendering. This typically means that the available models may not be 
directly suitable – they may be much too detailed, or only available as outlines, missing surface descriptions. 

Therefore, preparing models for interactive visualization requires a different workflow and other tools than 
typical 3D game engineering. This also applies to the functionality available in the viewing application itself, 
which servers a different purpose than most game playing environments. From experience, especially in 
planning discussions, the main benefit does not lie solely in a photorealistic display. Much more essential is 
the capability of being able to explain complex interrelations, enrich common 2D planning data by 
embedding it in a spatial 3D context (possibly together with simulation input), and being able to answer 
complex questions live with a suitable toolset, which sometimes requires a certain degree of abstraction. 

In the following text, we will present GEARViewer, an interactive geospatial viewer developed in recent 
years at VRVis in collaboration with large Austrian infrastructure providers and civil engineering 
consultants. After an overview of related work, we will discuss the basic architecture functionality of our 
system and provide detail on how various design decisions were made. Finally, we will present the workflow 
supported by our system, and show how it was used in two practical applications. 
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3 RELATED WORK 

Basically all software currently in use in the field of planning, GIS and simulation has more or less feature 
rich and realistic visualization front ends in its portfolio, trying to serve the need for realistic 3D display. 
Depending on their respective evolutionary history, market demands and overall resources, the visualization 
capabilities vary from rudimentary (i.e. specialized simulation packages) to highly sophisticated as in some 
modern CAD, 3D modeling or GIS packages. Despite the impressive development in this area, existing 
systems may have their individual strengths but often also drastic shortcomings especially when it comes to 
real-time and interactive display. The main problems usually concern extensive data, either through high-
resolution orthophotography, massive laser scans or highly detailed 3D models; smooth integration of 
numerous 3D data formats, render performance and/or additional output and interchange options. 

As an example, ArcScene (the 3D front end to ESRI products with real-time capabilities [ARCSCENE]) 
already offers seamless GIS data integration and a high quality level of geospatial visualization, but has its 
limits when trying to enforce highest data resolutions, and the integration of data from external 3D modeling 
packages is laborious and sometimes even impossible. The resulting display quality (i.e. texturing, lack of 
shader effects) and performance lags behind state of the art real-time scenes (see Figure 1). 

 

Fig. 1: Comparison of GEARViewer and ArcScene at 2 levels of detail. Left: GEARViewer showing 5cm orthoimage overview and 
close up (with line of sight GUI); Right: ArcScene with same dataset and viewpoints at maximum capacity 

Google Earth [GOOGLE] shows a similar situation with extremely powerful imagery handling, a decent 3D 
model interface and also good rendering capabilities, but a noticeable weak spot in terrain resolution and 
handling, and generally limited interactive analysis tools that mostly focus on current situation data which is 
usually not satisfactory for planning projects. 

The very broad and complex software branch of 3D modeling packages offers almost unlimited possibilities 
in 3D model generation as is impressively shown in various CGI movies. Together with GIS, many CAD and 
modeling packages pose a major backbone when it comes to visualizing planning projects. Various 
standardized and to some degree convertible export formats are the base for using this huge pool of powerful 
tools also for real-time output. Their main strength and focus today however lies in streamlined pipelines for 
rendered images and film output, which usually has conflicting requirements to real-time scenes. Therefore 
most of the sophisticated effects and tools cannot be made available in real-time models. 

A number of real-time rendering engines are available today that make use of cutting edge hardware 
development and GPU features with impressive display effects, detail and performance. Examples for such 
systems include NVIDIA SceniX [NVIDIA], OGRE [OGRE], OpenSceneGraph [OSG], and many game 
engines (which also typically provide infrastructure for input handling, game entities, and animation and 
gameplay scripting) [GAMEBRYO, QUEST3D, VALVE]. 

Typically, rendering and game engines are only used as the foundation for the actual development, and a 
sizeable team of programmers and content creators cooperate to produce the final product. Therefore, while 
rendering and game engines do not provide the functionality sought in this project, they could certainly be 
used as the starting point for development, and in fact the rendering framework developed at VRVis and 
used as the foundation for development has quite similar functionality to OpenSceneGraph, with the 
additional benefit of the development team being already familiar with its codebase, and the core developers 
being readily available to fine tune and adapt its capabilities for our purposes. 
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4 SYSTEM OVERVIEW 

In a typical application, the system is used to present various alternatives of a given infrastructure project. 
The entire scene can be interactively explored, switching between project alternatives, adjusting daylight and 
illumination parameters, taking measurements to provide exact visibility and distance information, and using 
a number of other features. 

 

Fig. 2: GEARViewer main render window with various GUI elements. 

Support for switching between alternatives is provided by allowing multiple scenarios (which may be 
different design options, present and planned system, etc.) for the presented scene. Each scenario is made up 
of a number of layers that can be individually shown or hidden at runtime. In turn, each layer consists of at 
least one original model; individual models are combined and packed at load time for efficient rendering. 
Therefore, switching between layers or scenarios is very fast once data is retained in memory. 

The interrelation between models, layers and scenarios is stored in an XML based scene description that is 
loaded at startup. This scene description also controls which parts of the scene are used for testing against 
collisions and which texture and shader attributes to use for each model, defines the animation networks used 
for dynamic content in the scene, and provides other details. 

To support loading a variety of models, a flexible import mechanism supports loading a variety of sources; 
its modular structure is easily adaptable to new data structures and file formats. All data is saved in an 
optimized, binary cache file format. These cache files can be loaded directly and used instead of the original 
source data. Therefore, a closed data package can be supplied to third parties instead of having to give away 
the original source data. Cache files are also interchangeable between scenarios and visualization projects, 
which provides advantages when complex imports require significant processing time. 

Various overrides are possible at load time without the need for re-importing source data. This includes 
offsets, scale and rotation transforms, and assigning shader programs and other rendering properties. Doing 
this externally to the original model and cache files allows one to use a base model that doesn’t need to be 
touched for fine tuning or model reuse, and also works for file formats that do not support these properties. 

The GEARViewer UI (Figure 2) consists mainly of a full screen sized main render window showing the real-
time scene as large as possible. Navigation is supported using a mouse, keyboard, game pad or spacemouse. 
The small GUI elements displayed at the bottom of the screen contain the most often used settings and are 
grouped thematically into i.e. viewpoint controls, camera paths, scenario handling, output or 2D map and can 
be minimized to title-bar size or closed completely if unneeded. Hidden in a roll-over sidebar are additional 
expert settings to gain access over the whole rich feature and parameter settings such as lighting and 
advanced HDR, animation or clipping plane control just to name a few. The arrangement and availability of 
GUI elements is configurable according to respective requirements and some elements appear automatically 
when triggering certain features such as the measure and visibility toolset or video render-output. Optionally, 
a full-screen stereo rendering mode (without GUI elements) is also available. 
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4.1 System Features 

4.1.1 Geospatial File Formats 

Traditionally, the exchange format for providing data from GIS applications to real-time rendering system 
required a detour to one of the mainstream geometry file formats (VRML, 3DS, OBJ, COLLADA, etc.). This 
required additional steps in the workflow to prepare the geometric model and often resulted in models that 
were not ideally suitable for rendering. To support a streamlined workflow and to optimize rendering quality 
and performance, we decided to natively support a number of geospatial file formats. Specifically, our 
system handles georeferenced imagery (like orthophotos), ESRI shapefile data, and ArcGrid raster data 
natively, providing a range of import options for creating geometry from GIS input data. Of course 
traditional model formats like VRML are also supported. 

 

Fig. 3: The real-time scene combines source data from numerous GIS, CAD and 3D modeler applications at various levels of detail. 

Typically, the working space of our system is the Austrian MGI projection, and the framework assumes that 
input data is all provided in the same georeferenced projection using cartesian model coordinates. Automatic 
reprojection from other reference systems is only partially supported, but we intend to extend this 
functionality and provide full functionality in other working spaces in the future. 

Georeferenced imagery can be used for applying textures to arbitrary geometry (both created from shapefiles 
or raster data, and models loaded from VRML files or any other input file format); they can also be used as a 
data source for the 2D map view. Textures are reprojected to the working space of our system as required. 

ESRI Shapefiles are supported using PointZ, (Poly)LineZ and (Multi)PolygonZ features. Automatic lifting of 
2D data to the scene is currently not supported, since there is no provision for specifying which parts of the 
scene should be used for lifting. Upon import, shapefile coordinates and database attributes can be used to 
influence geometry creation. Our system supports arbitrary calculations through C# expressions that are 
compiled on the fly and evaluated for each data point. For example, this can be used to control extrusion 
parameters or scaling of individual instances based on database fields. 

Shapefile information can then be used in a variety of ways. Point data can be used for automatic placement 
of hardware instanced geometry like trees, using shapefile attributes to select individual models and 
transformation parameter. Linear features can be displayed as is (for example, color coded to show isophones 
from highway noise simulations) or used in combination with user defined cross section profiles to extrude 
simple features such as noise barriers or fences. Finally, polygonal information can also be extruded 
vertically; for example, this feature has been used extensively to create block models from building outlines, 
using a simple concrete texture for the sidewalls and georeferenced orthophotography for the top surface. 

ArcGrid raster data is ideally suited for creating large terrain models. The original raster data is used to 
create a level of detail hierarchy so that distant parts of the terrain model can be rendered at lower resolutions 
to optimize resource and performance costs. Since ArcGrid data may contain values signifying missing data, 
these data points can be either left out (creating visible holes in the resulting terrain model) or mapped to a 
predefined value. For example, this functionality is used to create space in terrain models where excavations 
need to be displayed (and the original surface in the DEM would interfere), or where smaller, higher-
resolution insets are available. Again, the georeferenced image data mentioned above is used to apply surface 
detail to the terrain model. Both the level of detail selection strategy and the texture resolution for each level 
of detail can be specified by the user for optimal results in each application case.  

Due to the modular architecture of our framework, integrating further data formats in the future is 
straightforward, and does not impede any existing workflow. 
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4.1.2 Time System 

'Real time' is a difficult concept for presenting large geospatial projects. For example, it may be desirable to 
present the looks of a new building over the course of a day compressed into a few minutes, or to adjust the 
animation time system to quickly populate animation networks on startup or to handle non-real-time output 
properly. Therefore, our system includes three different time systems: animation time is used to determine 
vehicle speed; environment time controls lighting effects such as sun position and shadows, and output time 
is typically real-time for interaction, but for rendering video output is set to a fixed rate per rendered frame. 
Animation and environmental time can be either stopped (frozen) or coupled to output time using varying 
factors. Therefore, vehicle animation may for example be slowed down to be less distracting, and 
environmental time may be simultaneously sped up by a large factor to present a full day/night cycle in a 
short period of time. Additionally, environment time can be freely set to arbitrary values to quickly view the 
scene at a specified date or time. 

4.1.3 Path-based Vehicle Animation 

In many cases, enriching the presented environment with vehicle traffic or other dynamic content gives the 
end user a better impression of the effects of the planned project. Two variants of such an animation 
subsystem are currently under development, and may coexist within any scenario. One is suitable for 
vehicles that are strictly bound to existing paths, like trains which must of course always remain on tracks, 
while the other is geared towards more autonomous vehicles, allowing cars to react to their environment and 
change lanes. Both variants also support vehicle chains to simulate trains or trailer trucks. 

The basic structure is essentially the same: each animation network is defined by a number of polylines 
within a shapefile, with the line itself providing the central axis of an animation path, and attributes within 
the shapefile being available to define the intended vehicle direction, maximum speed, information how 
paths might form multiple logically connected lanes of a road) target traffic density, and other details. 

For each network, the system then identifies possible source and drain nodes. To release a new vehicle, a 
random source is chosen and a random path to a drain node is found according to the targeted traffic density. 

Vehicles are rendered using hardware instancing: the geometry and texture data of each vehicle model only 
exists once, and is repeated on the GPU hardware as often as required using appropriate transformations for 
each vehicle position. To improve diversity, colors can be adjusted for each instance through a custom pixel 
shader. A simple modulation of the present (texture) colors typically does not produce the desired result, so 
we use a separate texture color channel to modulate between the original texture and the per-instance color. 
In our system, this information is stored in an illumination map that accompanies most models to include 
self-luminance information for nighttime scenes. However it would be equally possible to use, for example, 
the alpha channel of an RGBA texture. 

Vehicle position updates are constantly calculated in a separate thread, and are therefore independent of the 
current render frame rate. For strictly path bound vehicles, all path segments from source to drain node are 
pre-calculated and merged into a single path upon vehicle creation. This merged path is then used to animate 
the vehicle at constant speed. After each position update, front and rear axes of each vehicle are explicitly 
constrained to remain on the path; in the case of vehicle chains the training sub-vehicles are also aligned on 
the path behind the main vehicle. On the other hand, autonomous vehicles only receive their target endpoint, 
and are designed to automatically find a suitable route. They can exploit logical connections between paths 
forming multiple lanes of the same road, and therefore change lanes for more realistic behavior. These 
vehicles are also aware of other traffic and adjust their speed accordingly to avoid collisions. This increased 
realism also comes at a higher computational cost, however in our current prototype the main bottleneck is 
still displaying larger numbers of vehicles, and not the calculations required for updating their positions. 

4.1.4 Environment 

Our system supports a geospatial reference location to accurately depict the sun position and lighting on a 
given longitude and latitude. Currently the sky is rendered using a Preetham day sky model [PREETHAM] 
and optional cloud layers. In addition, the sun position is used for calculating dynamic illumination and 
shadow mapping of the scene as well as day/night changes. Many parameters of the system are user tunable, 
such as shadow map extents, resolution and biasing, illumination intensity and shadow contrast, and enabling 
high dynamic range rendering with support for advanced effects such as blooming and dynamic brightness 
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adaptation. This enables the user to fine tune the environment for specific visualization purposes, and store 
and recall all parameters to quickly switch between different setups. 

5 SOFTWARE ARCHITECTURE 

Our viewer is based on a general purpose rendering framework that is under active development at VRVis 
and used in a large number of applications. The presented application is currently one of the primary users of 
this library, and its specific requirements are therefore actively driving its development, with integrated 
support for geospatial file formats, special functions for georeferenced imagery, and the capability of 
handling very large data sets. It was developed in C#, a language that greatly facilitated the multithreaded 
design of our framework and provides automatic memory management which minimizes the effort required 
for tracking resource usage and avoiding memory leaks. 

Internally, the scene description explained in the system overview is converted into a hierarchical scene 
graph data structure, which is then traversed at runtime for rendering. This hierarchy maps very well to the 
scene/scenario/layer/model concept, and switching between scenarios or enabling or disabling layers simply 
activates or deactivates parts of the graph at render time. The hierarchical nature of the graph also facilitates 
geometric queries into the graph, since large parts can be quickly excluded when testing for possible 
intersections or visibility. 

5.1 Render Precision 

Particular care must be taken to avoid numerical precision problems given the enormous extents of typical 
geospatial visualization projects and the fact that current graphics hardware typically only supports floating 
point calculations with limited precision, which causes rendering artifacts due to numerical rounding errors 
when using global coordinates or even a geospatial coordinate system that uses large offsets (such as UTM). 

Instead, our system uses a floating origin approach and local coordinate frames for all models. Local 
coordinate frames have the advantage of cache files that are independent of the actual placement of the 
model within the scene, and which are therefore easily reusable across projects. At runtime, the placement 
offsets and scene origin are resolved internally relative to the current camera position, such that offsets sent 
to the GPU for objects close to the viewpoint are guaranteed to be small, and therefore rendered at the best 
possible precision. 

A similar problem exists with the z-buffer algorithm used by graphics hardware to determine visibility 
[CATMULL]. Sub-optimal parameters either cause scene elements that should be visible to disappear 
because they are outside the clipping range, or cause visual artifacts (z-fighting) when the limited numerical 
resolution of the buffer causes scene elements to be resolved incorrectly [HEDENUS]. The latter problem is 
particularly problematic: for example, a typical model of overhead signs requires a resolution of 5cm to 
display correctly, and is visible at large distances. We have found that no single strategy was suitable in all 
cases, so we have implemented a number of user selectable strategies that provide various tradeoffs between 
scene complexity, display quality and render performance. 

One approach that requires very little computational cost is adjusting the near and far clipping distance based 
on the absolute height (relative to the scene origin) of the viewpoint. This provides a good approximation to 
viewing objects at close range when near the ground, and being able to view distant objects when high above 
ground. We have found that this approach works quite well for relatively flat terrain.  

If the environment is significantly more profiled and intersection calculations to the ground surface are 
available, this approach can be modified to use above ground level (AGL) altitude instead of absolute height. 
This requires only one ray cast, and works well if the ground model is watertight. If it is not, and the ray cast 
misses an intersection, possible strategies may be to re-use the previous ground level, to perform a second, 
slightly offset ray cast, or to fall back to the reference-z approach. Furthermore, these ray casts are often 
performed anyway to display AGL elevation to the user, and are therefore essentially available for free. 

However, this approach only take into account the geometry that is directly below the viewer, and therefore 
cannot incorporate structures that stand high above ground. One example would be viewing a bridge 
spanning a deep valley, where the system would estimate a high altitude above the ground below, while in 
actuality the bridge may be very close to the viewer. Our system can use kd-Trees for efficient intersection 
calculation, and this data structure also supports closest-point queries, such that it is quite easy to find the 



Stephan Mantler, Gerd Hesina, Michael Greiner, Werner Purgathofer 

Proceedings REAL CORP 2011 Tagungsband 
18-20 May 2011, Essen. http://www.corp.at 

ISBN: 978-3-9503110-0-6 (CD-ROM); ISBN: 978-3-9503110-1-3 (Print)
Editors: Manfred SCHRENK, Vasily V. POPOVICH, Peter ZEILE
 

 

351 
 

closest triangle vertex; this can then be used for adjusting the near clipping plane appropriately. The far 
clipping distance can then be adjusted using either of the aforementioned strategies. 

In summary, none of these solutions provide the best result in all possible scenarios, especially since 
significant parts of the environment are often excluded from intersection calculations for performance and 
memory efficiency. However, we find that one of these approaches typically works well for a given scene.  

5.2 Texture and Shader Management 

Texture maps are crucial for adding detail to objects, and are heavily used in typical geospatial visualization 
scenes – often adding up to hundreds of megabytes of texture memory. In addition to this massive resource 
consumption, frequent switching between textures has a strong negative impact on render performance. 
Therefore, optimized texture handling is crucial for the overall performance. In our system, textures can be 
specified in many common image formats to facilitate source input. Textures are then internally converted to 
the compressed DDS1, 3 or 5 formats [IOURCHA] depending on the source texture and input settings. In 
addition to the common diffuse color textures, additional textures (for example, for illumination or normal 
mapping) are supported by looking for specially named texture files next to the original data. This allows 
even models created in formats that do not support multi-texturing to be created using standard tools and 
subsequently augmented with additional texture information.  

To streamline the model creation workflow, special support was added to automatically apply georeferenced 
images as textures to arbitrary input models. Therefore, models can be supplied in formats that do not 
support texturing, or created in applications where applying area-wide images as textures is cumbersome. 
For example, this approach is used to automatically load and texture polygonal features from shapefiles and 
raster digital elevation maps without the need for manual interaction (see also Section 6 for details). 

Where possible, multiple small textures are packed into larger atlases to reduce the number of context 
switches while rendering. Special care must be taken if textures are used as repeating patterns, and to avoid 
bleeding into adjacent textures when using filtered texture lookups or mipmapping; in our system textures 
receive a predefined padding that is sufficient for filtering and a limited number of mipmap levels. Textures 
that are found to be sensitive to such artifacts can be specifically excluded from packing. 

As has been mentioned earlier, shader programs and other rendering parameters are decoupled from the 
actual geometry, and are assigned at special nodes during the traversal of the scene graph (and therefore 
apply to entire subgraphs and the models represented therein). They are therefore easy to change or replace, 
and in fact can be reloaded at runtime to facilitate debugging and fine tuning shader parameters. However, 
adding new shaders to the system at runtime is currently not supported. 

The shader infrastructure is partially exposed to the end user, with much detail abstracted away but sufficient 
flexibility to allow users to essentially create arbitrary shaders. This functionality has been used for hardware 
instancing, per-instance model variation, special lighting effects (reflection mapping, animated textures, and 
others), and simple vertex animation in cases where a full-blown animation network would be overkill.  

6 WORKFLOW 

The workflow from raw project data to the final interactive scene varies in detail according to available input 
data, project need and of course the aspired complexity, display quality and level of detail which is directly 
constrained by the overall budget. Exceeding basic GIS data visualization, further refinement for more 
detailed planning projects or special questions (as shown later on) is always possible and usually realized by 
integrating more or less detailed additional vrml models into the scene. The model creation itself is not 
elaborated further in this text, as the range of software products capable of producing detailed 3D models is 
vast, as are the available export formats with their individual strengths and weaknesses. Vrml is only used as 
a container format and was chosen due to its wide propagation and sufficient features. 

Care was taken to keep the necessary manual preprocessing steps as low as possible. The choice for ArcGrid 
as format for the digital terrain model (DTM) was made because it is fairly efficient, well documented and 
therefore also established in a large range of commercial products. The shapefile format is also thoroughly 
documented and widely available. Essentially, the manual preprocessing steps are the selection and is 
thematic filtering of source data according to their intended use, and converting 2D vector-geometry (i.e. 
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isophones) to 3D by conforming to terrain elevations for use as thematic overlays (since this step is not 
currently available in our framework). 

 

 

Fig. 4: Workflow from raw data to combined interactive real-time scene in GEARViewer.  
This example is focused on fully automated scene generation based on readily available data. 

6.1 Example: ASFINAG – Dynamic Noise Map 

The goal of the “Dynamic Noise Map” project, developed in close collaboration with ASFINAG (primary 
federal road network provider in Austria) was to enhance the substantial AFINAG GIS information by 
displaying terrain data together with thematic overlays in an interactive real-time environment with 
additional usability features. A major demand was to completely eliminate manual processing steps for the 
scene, in order to provide similar models in the future for any other given area covered by the database “at 
the push of a button”. This was to be demonstrated on a previously defined sample area. 

Input data from the ASFINAG GIS database provided all necessary information to build a high-resolution 
landscape model of the chosen motorway segment and its surroundings. The data itself was initially 
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generated mostly by an area-wide aerial survey and is serviced by ASFINAG GIS-staff and its survey 
subcontractors who also provide the same data daily in a 2D intranet web service application. 

The extent of the chosen project area was ~12 x 15km resulting in an area of 192 km² at a DTM raster 
resolution of 1m² covered with aerial imagery at a resolution of 25cm per pixel. A close-up range with the 
same DTM resolution was defined with 5 x 7km (35km²) but at a much higher orthoimage resolution of 5cm. 

The terrain grid was generated from contour lines, break lines and points. 3D object information was 
available as 3D line/polygon features, either being a baseline or in case of buildings and bridges the top edge 
with the corresponding attribute information such as building- or noise barrier-height. Depending on 
geometry and object type, different extrusions and textures were applied to generate suitable scene elements. 

After sifting through the data structure and available geometry and attributes, the vector-data was split into 
individual content related shapefiles (i.e. buildings, bridges, noise barriers, guard rails, etc.). For each shape, 
suitable import parameters were configured, managing all necessary parameters such as extrusion height, 
texturing, capping and transformations. Similarly, the parameters for 2D navigation map creation from 
orthophotos and for the terrain generation were also tested and defined. 

These parameters were then used to create the central scene description, using predefined file names and 
locations for input data. Therefore, subsequent exports from the GIS database using the same structure could 
then be used to automatically create preprocessed cache files and visualizations for arbitrary areas, without 
manual interaction. The resulting scene can then be used as is, or further refined manually using specific 
shaders, custom textures or additional models as required. Figure 4 illustrates the presented workflow. 

The application enables the user to move freely in an interactive real-time environment, viewing & analyzing 
the GIS data at its highest original resolution (1m² DTM with 5cm Ortho!). Also being able to modularly 
enable and disable data layers and switch between predefined sets and scenarios (i.e. day/night noise 
isophones), together with measure and line of sight analysis tools.  

6.2 Example: Usage in various traffic infrastructure and flood protection projects 

The functionality and performance of GEARViewer has also led to utilization in several other planning 
projects with large extents, very high detail and specialized requirements, where the provided technology 
resulted in a very positive response throughout the planning process with public presentation and discussion. 
In many of these cases, the projects required the integration of models and data from a wide range of 
planning companies and consultants. Typically, GIS data was used to provide large-scale landscape features, 
while the detailed object level was dominated by CAD data. Depending on the capabilities of the planning 
team, software and output formats, detailed objects such as buildings or bridges were built from scratch out 
of 2D plans and cross-sections, or directly integrated via textured 3D mesh exchange formats such as 3DS, 
OBJ, VRML, etc. However even if a 3D model already existed in various design programs, some manual 
refinement was often required in order to make it suitable for real-time rendering. These tasks included 
proper georeferencing, retexturing, reduction of overboarding detail and geometry integrity checks to avoid 
coplanar geometry and other artifacts. Some of these issues can now be corrected automatically during 
import, or can be modified later on via shaders or other render parameters. 

After the base scenes had been assembled, custom shaders were then used to further improve the overall 
visual quality in a number of ways (see also Figures 5 and 6): 

• Illumination maps: simulating lights/ night scenarios (skyline, cars, tunnel safety equipment, etc.) 

• Reflections: realistic architectural materials (glass facades or reflecting surfaces, etc.) 

• Animated textures and texture movement: simulating water flow and all kinds of time based material 
changes also in combination with Illumination maps (clouds, signal beacons, billboards, etc.) 

• Geometry position interpolation: simple geometry animation according to various functions (rise and 
fall of water levels, moving tower cranes, circling helicopter, etc.) 

Scenes were populated with multiple animation networks for car and train traffic as well as other moving 
object. Count and movement of traffic are roughly based on externally simulated data to give an approximate 
impression of the actual traffic density.  
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Fig. 5: Animation networks and rendering effects with real-time shadow maps and HDR rendering 

 

Fig. 6: Real-time shader usage: illumination maps, reflection maps, texture & geometry animation  

7 CONCLUSION AND FUTURE WORK 

The goal of GEARViewer and its preceding developments has been to create a versatile framework for 
displaying very large geospatial data in a real-time environment, with suitable handling and UI features for 
presentation purposes. The system supports a streamlined content creation workflow that integrates 
geospatial file formats for optimal performance and customizability. 

In the future, we will continue to improve the handling and rendering performance for geospatial data. For 
dynamic content, we will investigate how high-level traffic analysis results for day or night traffic or 
changed project scenarios can be used to realistically populate the scenery with individual vehicles in a way 
that integrates well with the different time systems and usage scenarios. Additionally, a more capable 
scripting environment may be useful to control intersection lights, and other dynamic content. 

Finally, safety simulations (for example, flood, water flow, or fire and smoke spread) also overlap and affect 
the infrastructural design process, and we are investigating the integration of such effects in the visualization. 
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